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U(t) = g ch-'@/'l/z) 

Other values of the constants yield solutions of the Kawahara equation in the form of 
periodic waves. 
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NON-AXISYMMETRIC BUCKLING OF SHALLOW SPHERICAL SHELLS* 

I.M. BERMUS and L.S. SRUBSHCHIK 

The buckling of elastic shallow orthotropic spherical shells subjected 
to a transverse load is investigated on the basis of geometrically 
non-linear equilibrium equations in a non-axisymmetric formulation. By 
using the method of finite differences and a continuation procedure in 
the prameters in combination with a Newton operator method an algorithm 
is constructed to determine the state of shell stress and strain in the 
pre- and post-critical stages. 

The upper critical loads (CL) of spherical shells are determined 
for different external pressure distribution laws taking perturbing 
factors such as initial harmonic and azimuthal imperfection directions 
in the shape of the shell middle surface and analogous load deviations 
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from a uniformly distributed load into account. Under the imperfections 
mentioned, good agreement is obtained with the results for the upper CL 
found by the theory of buckling and the initial post-critical behaviour 
/l-4/. Special attention is paid to an investigation of the 
non-axisymmetrical buckling of an isotropic spherical shell closed at the 
apex. It is shown that the presence of small initial imperfections is 
the reason for a substantial reduction in the upper critical load and, 
moreover, its values can be determined by the formula for unimodal 
buckling not at the least bifurcation point but at the one following if 
the initial damage component proportional to the harmonic natural mode of 
this second bifurcation point is predominant. 

1. Pomlatim of the problem. The equations of geometrically non-linear elastic shells 
of transversally-orthotropic truncated spherical shells with initial damage can be written in 
dimensionless variables in the form /5/ 

A (S,, s,, s,, w) - [w - 2, Fi = T (p, I, 6) il.11 

n(s,,s,,s,,F)-~L5-~U)rW] =o 

A (S,, s,, s,, w) = s, (WIV + -g wy + s, gj- w”” + + w” -- 

$($w’y] + s,(+“__&w~- _i_ &w*-) 

[w, Fl = l,wl,F + l,Fl,w - 213w13F, l,w = w” 

I,w = f w’ + f w”, I,w _: .$ w’ - + Ed’, (y-y&(), (y-+() 

2 (5, e) = z* (5) -t” 55 (x, cl), 2* (5) = (A’ - x2)/2, 0 < a <. 2n 

We will consider the system (1.1) together with the boundary conditions 

[P = F' = I?,20 = frWl,=n* z-= 0 

[w = w' z r,F = r,F1,,=n -;o 

r,F = F" i_ S&F, lT,F = XF’” - s, (+ E’ - -+- F”’ + -$ F..) i- 

S, (f f”” - -$ F”) - SJ,F, I’,w = UI” + S&w 

r,w = xwm + Wf7 - S,,L,~ + s,, 
i 
+ d. - f d j 

The dimensionless quantities in (l.l)-(1.3) are related to the dimensional ones by the 
formulas 

Here W is the deflection, @ is the Airy stress function, X is the transverse load 
intensity, and p, % are polar coordinates. The function &(p, 6) describes the initial 
deflection of the spherical shell with middle surface HI1 - (pf~)~l where g is a scalar par- 
ameter, a is the radius of the reference contour, a, is the radius of a circular hole with 
centre at the point p = 0, and H is the rise of a corresponding spherical segment. The 
boundary conditions (1.2) correspond to a free edge for p = a,, and (1.31 to a clamped edge 
for p = a. 

By using the relationships in /6/ the constants St can be written in the form 

J,= -, s,= l---v2 7 1 - v= 
1 - vzvp k,---9,s ’ s,-=2(1--~~(~+ -a’ 

s, = k,, S, = 1, S, - k,k, - 2v1, S, = - S,, = - $ , S, = k,, 

Here E,, E,, vl, Y%, G are, respectively, the Young's moduli, Poisson's ratios, and the 
shear modulus. 



37-l 

A relatively small number of papers /y-17/ consider the direct numerical computations of 
the non-linear behaviour of spherical. shells taking non-axisymmetric strains into account. 
The solution of the initial boundary-value problem for an isotropic spherical shell is reduced 
in these papers to the solution of a system of non-linear algebraic equations. For this all 
the dependent variables in 191 are sought in the form of cosine series in the azimuthal direc- 
tion, and the system of ordinary differential equations obtained for the coefficients is then 
discretized by using the method of finite differences. The Galerkin method is used in /lo/ 
with a two-parameter basis. The system of non-linear algebrarc equations is derived in /ll-17/ 
by the method of finite differences in a two-dimensional mesh in a polar system of coordinates. 

The present paper is among the last group. Unlike preceding investigations a new algorithm 
is proposed here for calculating the state of stress and strain of a shell in the post-critical 
stage, and the upper CL is determined on the basis of a finite-difference analogue of the 
buckling criterion. 

2. Application of the method of finite differences. We will solve the boundary-value 
problem (l-l.)-(1.3) by finite differences. Assuming the state of stress and strain to be sym- 
metrical about a plane drawn perpendicular to the plane of the shell base through the ray 9 =O 
/12/, we separate the domain D = (Ao<x.2.gA, O,< e.Snf into N equal parts along the radial 
coordinate x and into M equal parts along the angular coordinate 0. Consequently, we obtain 
the finite difference mesh (xE, fi,,), where X~ = A, + ah, e,, = yA9, h = (A -A,)!N, A8 = n/M. We 
introduce the 2(N + 1)(M + 1) dimensional column vector 

Y = (%f Y,, . .q YM)I Y, = (W,yt J’w, WIY, Fn’ . . ., WNy, FNy) 
W ay = w (x=, e,), y = 0, 1, . . ., M; a = 0, 1, . . ., N 

that is formed by the manifold of values of the pair of functions w, F on the rays e = e, 
at the mesh nodes. We replace the partial derivatives of the functions in system (1.1) by 
known central finite-difference formulas by using a 13-point pattern. We have introduce nodes 
outside the contour with the coordinates 

(xGt e,t , a = -2, -1, N + 1, N + 2, y = -1, 0, . . .,M + 2 
(z,, e,), a = 0, 1, . . ., N, y= -2, --P,M+l,M+2 

e_i = --ide, X-i = A, - ih, e,+* = n + iae 

XN+{=R+ih, i==1,2 

to write central differences on the arcs x = A, x =A - h, x = A,, x = A, + h (O<@(n) and 
on the rays e=o, e=Ae, e=n--118, 8=n (A,cx<A). We eliminate values of the functions 
at nodes outside the contour by using the boundary conditions (1.2) and (1.3) under symmetry 
conditions /l&J 

[w' =c F' = w"' = F"']&_ = 0 

We hence obtain a system of K = 2(N f l)(M f 1) non-linear difference equations from 
(l.l)-(1.31, which we write in the operator mode 

P !Y, p) = 0, P = (PI, P,, . I ., PK), P: Eli -+ EK (2.1) 

where Ex: is a Euclidean space of dimension I(. 
For p= p. let the solution Y(po) of system (2.1) be known. We will calculate 

Y(P, + AP) by using the Newtonian iterations 

YV (PO + API = Y, (~0) -I- il 6~:” (2.2) 

where t is the given number of the iteration and 
the I-th iteration. 

&/v(") is the increment of the vector y, at 
These increments (along the rays) are found for m = 1, 2, ...l t from t-he 

system of linear algebraic equations 

(Py’) fYcmf, p. + Apl 8Y(“‘) = -P iY@“), po + Apl 

Y(m) = (y:=‘* yjrnf, . . .* y$g’), 6Y(m) = (6y~“‘, 6yi”‘, . . ., S&‘) 
(2.3) 

Y:” = Y, t&Jr Yt" = Yv (PO) + $YE r = 2,3,... 
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Here &'(a, p) is the Frechet derivative on the element a~ EK. 
has the form 

The linear system (2.3) 

C&Y, + B,~Y, + A,~Y, = &I (2.4) 

WY, + C,~YI + B,~Y, + AMY, = d, 

QSY,, + D,Jy,-, + C,Jy, + B$Y,,+~ + A,6yy+z = d,, y -= ;:. 3. , 
M-2 

h&/~-s + DM-,~~M-z + CM-I~YM-I + BM-~YM = &-I 

&&YM-2 + DM~YM-I + CMbyM = dzv 

The superscript 1 is omitted on the increments 6y,(') in (2.4). The matrix of system 
(2.4) has a five-diagonal block structure. 
2(N + 1) x 2(N +I), 

The matrices A,, B,, C,, D,, EY have dimensions 
where the matrices A,,E, are diagonal B,, D, are seven-diagonal, 

and C, are nine-diagonal. The vectors d,, d,, . . ., dM defined by the right side have the 
dimensionality 2(Nf 1). Because of their awkwardness the expressions for the matrix elements 
of the system (2.4) are not presented. 

We seek the solution of system (2.4) by matrix factorization formulas in the form /18/ 

6Y, = UdYy+1 t- V,SYy+z + $3 y = 0, 1, . . ., A4 - 2 (2.5) 
6yM-1 = UM-IGYM + %Gl 

To determine the factorization matrices U,, V,, we obtain the formulas 

U, = --co-‘B,,, V, = -Co-lAo, so = Co-‘d, (2.6) 
R, = D,U, + C,, U, = --RI-l (D,V, + B,), V, = -RI-‘A, 

SI = RI-l (d, - D,s,)v R, = [E, (U,,U,-I + V,z) + D,U,-1 + C,l 

U, = --KY-’ [(EYUV-2 4- Dv) V,_, + &I, V, = -R;‘Ay 

S, = R,-’ [d, - E, ( Uv.+l + sym2) - D,+J 

We first determine U,, V,, sy from (2.6) for 2,<y,<M - 2, we then find UM-~, sM-1 and 
6yM = SM. We later calculate 6y, successively for y= M-l,M- 2, . . . . 0 by reversing the 
factorization path by means of (2.5). 

The iterations are performed until the inequality 

is satisfied. 
In an analogous manner, the solution is constructed for the next steps in the motion along 

the parameter p for given values of e, and t. If the iteration process (2.2)-(2.7) does not 
converge after t iterations, then the step Ap is halved and the process is repeated from 
the point po. The value-of the CL p* is determined by using an energy criterion for the 
buckling of conservative elastic systems. The analogue of this criterion for finite-difference 
equations /19/ results in evaluation of p* as the least positive root of the equation 

det (C,) fi sign(det (R,))= 0 
?=I 

(2.8) 

where Co and R, are matrices from (2.4) and (2.6). 
In conformity with the above algorithm, a numerical program was realized on a computer 

for which the correctness of its operation was confirmed by comparing the upper CL obtained 
with the results obtained by others. 

Values of the upper CL p* (e)= 0.754, 0.712; 0.679, respectively, were calculated for 
e = 0.01, 0.03, 0.05, for A = 6,~ = 0.33 for an isotropic spherical shell, closed at the apex, 
and subjected to a pressure distributed as T = 4p(1 + ~sin8). These results are obtained on 
a finite-difference 15x10 mesh that corresponds to the partition into N = 15 equal intervals 
along the lradial coordinate and M= 10 equal intervals along the angular coordinate 0, where 

ni2 < 0 < 3nl2. The values obtained for p*(e) agree well with results known earlier: the 
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quantity p*(O.Ol) is 3% less than p* (0) /20/ while the quantity p* (0.05) differs by 6-9% 

from the value of the upper CL found /ll/ by using another scheme of the finite-difference 
method. 

For the same spherical shell subjected to an external pressure distributed uniformly over 
just half its surface (T (p, 5, 0)s T, @, x, e)= 4p for 0,(8<n and T, (p, x, Cl)= 0 for 

n< e< 2n) or just over a quarter of the surface (T (p, Z, e)E T, (p, 5, e) = 4p for O,<O< 

n/2 and T,(p,x, 0) = 0 for n/2 (8 < 2x), the results for the upper CL p* are given in 
Table 1 (column A) for h = 6, Y = 0.33 together with the results obained by others; the number 
of partitions N along the radial coordinate and M along the angular coordinate are also 
presented for half (a quarter) of a spherical shell. It is seen that the results of this paper 

and those of previous authors diverge by 5-7% in the case of the load T, while the divergence 
increases in the case of the load T,. 

Table 1 

Moreover, the values pi of the upper CL of the non-axisymmetric buckling of ideal ortho- 
tropic spherical shells under uniform external pressure were corroborated. According to the 
procedure developed in /2O, 21/, these values of pn are determined from linear boundary-value 
problems /6/ 

L:' (w,,, f,) = A, (&, S,, S,, w,,) - f $w,," -$'&,,w, + 

+(8 * + 13) fn" + (8, + B)' l,, ,f ,, = 0, 4, rtw,, = & w,’ - $ w,, 

L?’ (w,, f,) = 4 (h s,, s,, f,) - + (e, t p) W,,I - (e, + p)’ I,, ,,w, = o 

4, (s,, s,, s,, w,) = s, w:” + ; LL~!:~ ( na (75’ - 2) 
)-s2 [fw+&- 

1 n= TW, i -s,-$ w,“-_w ( .‘++dq, ()=&( ), 8*=2*’ 
[fn = f,’ = r 3.n n- 2s - rr. nWnlx=h = 0 
[w, = w,’ = r,,,f, = I- f 1 = = 0 2,nnr A 

5 *fn = fn* -L w,, ,f,, ra. ,f, = xf,m - S, II cr12 + I) 1 f,’ .-2f f,, I 
88 f (Zf?L’ - fn) - w,, nfrL 

1 _ 

(2.9) 

r3, d4 = ~~‘1 + sd,, db, r4, ,wn = xw,flf + Wnff - s,,I, ,w, _ 
s,, $ @wrL’ - we), n = 1,2, . . 

The functions fi (p, x),9 (p, x) are determined from the non-linear boundary-value problem 

Sl (XV + B’) - s, -$ B - (0, + B) 9 + ‘p (p, z) = 0 

s,(~~“+~‘)-sS,t~t-e*~+~~~=o 

14’ + s,,p = *La. = 0, rp = 33)’ + S,$l,=* = 0 

(2.10) 

x 

fi = -w*‘, I# = F*‘, ‘P (P> 4 = s T (P, .c)zdr 
A. 

Here the pH are determined from the formula pa = m&p,, where p,, 
values and (w,,,f,,) 

are the least eigen- 
are their corresponding vector eigenfunctions of the boundary-value problem 

(2.9) and (2.10). Note that system (2.9) and (2.10) is derived from (l.l)-(1.3) as a result 
of linearization with respect to the axisymmetric equilibrium (w*, F*) 
of the solution in cosines of multiple arcs. 

and subsequent expansion 

The results of computations by both methods are practically in agreement for T(p,x)=4p. 
For instance, for A = 6, k,= 1.5, k, = 3, y1 = 0.25, r0 E n,Ja = O.i, Y = 0.33 

(2.2)-(2.8), while ps- p,=O.499 according to (2.9) and (2.10). 
p* = 0.497 according to 

If I.,, = 0.25 
shell parameters are the very same, 

and the remaining 
then p* = 0.337, pH z pa = 0.344. Both results are determined 

for p* by a finite-difference mesh of N x M= 22 x8 and E0 = 10-d in (2.7). 
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Remark. The system of non-linear difference Eqs.(2.1) can be considered with respect to 
a 2(&f+ I)@'-+- Q-dimensional column vector 

Y = (yZ, yz*, . ., I/**), Baf = (w,, F&, f ., wUan_i, FaJgf, a = 0, *, ., .v (2.%l) 

that is formed by a set of values of the function pairs m,f: on the arcs z= za at the mesh 
nodes. The algorithm elucidated above was also realized for solving the non-linear system 
(2.1) for the vector Y from (2.11). Formulas are obtained here that are analogous to (2.2)- 
(2.8) but with yy, 6y,,M and N replaced, respectively, by Y~*,~Y,*, N,M. For N>M such a 
method of solution is moreeconomicalas compared with that elucidated in Sect.2 since matrices 
of the dimensionality z(M-i- *) X z(M $_ 1) are used in (2.6) in place of matrices of the dimension 
Z(rV $- 1) X 2 (IV + l). Note that in tne case of an isotropic spherical shell closed at the apex, 
a variational-difference method in combination with the procedure of continuation in the load 
parameter and Newton's method was used earlier in /12/ to determine the state of stress and 
strain in the precritical state and to calculate the values of the upper CL. The system of 
non-linear difference equations obtained in 13.X/ was solved for the vector Y in (2.11). It 
turns out that the linearized system of equations in the vector Y in [12/ and system (2.4) have 
an identical structure. 

3. ~~~f~a~~o~ of t&z f~n~~e~~~~ere~e method for shett maZysis in the post-criticat 
stage. The algorithm (2.2)-12.7) described in Sect.2 cannot possibly be used to continue the 
solution in the post-critical domain since condition (2.8) is satisfied at the critical point 
p * . To construct the solution in the post-critical stage we use the ideas of the adjustment 
method 121, 22/. Assuming the point p* to be the limit, we replace motion in the parameter 
p in its ne~~hbourhood by motion in the parameter q = u?ir, where j, k are indices of the mesh 
node satisfying the conditions l,<j,<N--l, i,<k<~@--f. In this case the vector 

g = (Zo, 2,. . . ,. ZM), 2, = (Wop, F,,, . . ., WNy, FNy) 

rir = 
@Ok s F,k, . . ., uipx, k, Fj-I, kt P, Fjk, Cj+j+l. ii- Fj+x,k > . ., WN. k, FN. k) 

is to be determined instead of Y in system (2.1) r where Y takes all integer values between 0 
and m, except k. We calculate the values of zy by using the Newtonian iterations 

where 62, is written as 6y, in (2.2) but with 6Wj, replaced by 6~. Here y0 ==mjk is a 
known value while Aq is the step in the motion in the new parameter. The increment SZ,C"' 
are determined from the system of linear equations 

(&') [ZfWlf, Q0 -i_ hq] i$P) = --P [Z(m), 'lo -I- Aql, zy(l) = zy (q*) 

which has the following form 

(r, t_ Q)ijZt"'t = d, d = (d,, d,, . . ., d&f) 

where L is a five-diagonal block matrix with a structure analogous to the matrix of system 
(2.4). For a fixed value of k satisfying the condition 2,<k<M - 2 all the matrices and 
vectors, with the exception of AL_%, i?k_*, CR, L?I+l, ER+~, dk+l (a = -2, -1, 0, 1, 2) are identical 
with the corresponding matrices and vectors of the system (2.4). The block matrix Q consists 
of M+1 block columns whose elements are matrices of dimensions 2(N t_ 1) x 2(N + 1). The 
non-zero matrices exist here just in the (k + l)-th block column o = (Q,, Q,, . . ..f&). The 
presence of this column does not allow direct application of the matrix factorization method 
(2.5) and (2.6) to system (3.1). 

The solution of system (3.1) using the matrix factorization method is constructed suc- 
cessfully if auxiliary unknown vectors uy and matrices @, (Y= 0, 1,..., M) are introduced 
by means of the substitutions 

62, = uy - (P,&,, y = 0, 1, . . I, M (3.2) 

Here uy and tfl, are determined, respectively, from the system of scalar and matrix 
equations 

Lu = d, u = (u,, ul. . . 

LCJ = w, 0 = (Do. q, I 

The first system in (3.3) is solved by the matrix 
and (2.6) with 6y, replaced by my. The second system 
analogue of (2.5) and (2.6) with the vectors G/,, SY, d, 

.I UM) (3.3) 

. .1 w 

factorization method by means of (2.5) 
in (3.3) is solved by using the matrix 

replaced by the matrices Q,, G.,> St,. 
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The vectors u, and the matrices a, are determined for all subscripts y by solving system 

(3.3). Furthermore, by setting y = k we obtain Sz, = (E i- @&’ uk from (3.21, where E 

is the unit matrix. Now, applying (3.21, we find 6% for the remaining subscripts y. 
Note that the method considered, of inserting auxiliary unknown vectors and matrkeS, can 

be extended to solving systems of the form (3.1) when the matrix Q contains additional non- 
zero block columns besides the (k -+- 1) -th block column. For example, we shall seek the 
solution in the presence of the (14 l)-th (lfk) non-zero column in the form 

sz, = Uy - a&, - IIJJZ, 

Computation of the state of stress and strain of a spherical shell under non-axisymmetric 
deformations in the post-critical stage requires a considerable amount of electronic computer 
time and memory. These increase sharply as the values of the parameter II increase. 

In the case of axisymmetric deformation, the realization of the algorithm is simplified 
since we have the boundary-value problem (2.10) in place in the system (l.l)-(1.3), while we 
obtain a tridiagonal block matrix with matrix elements of dimensions 2x2 in place of the five- 
diagonal block matrix with matrix elements of dimensions 2(N f 1) X 2(% f 1) in the linearized 
systems of equations of the form (3.1). 

We will consider the uniform mesh xi =A0 + ih (i = 0, 1, . . . . Nf on the segment IA,, Al 
with two nodes outside the contour x+ = h, -& ZN+~ =A + h, wfiere h = (il - &J/N, N is 
the number of partitions. We introduce the mesh vector-function 

y = (V-1, Y,, . . .? y,v+l), .~/i = (pi, +i)t i = --1t 0, . . av N + 1 (3.4) 

in it formed by a set of values of the pair of functions p,+ at the mesh nodes z~. Replacing 
the derivatives of the functions with respect to x by central finite-difference formulas, we 
obtain a system of non-linear difference equations of the form (2.1) from (2.10), where E, is 
a Euclidean space of dimensions K = 2 (N + 3j. 

In this case system (2.1) is solved by using (2.2) and (2.3) in which 

SY = (6y_,, 6y,, . . .) 6yN+l)r 61, = (6piv b$i)y i = -1, 0, . * *T N -F 1 

and Y is defined in (3.4). The corresponding linear system, analogous to system (2.3), has the 
tridiagonal block structure f2l 

G,6y1 +- Ho5ya - G&y_1 = 0 

-GN~N-1 $_ HN~YN + GI&N+I = 0 

The matrices Ai, BI, Ci (i = 0, 1, . . ., N), GJ, 17, (i = 0,N) have the 
(3.5)-(3.7) is solved by the matrix factorization method /2/. 

On approaching the limit point p * the motion in the parameter 
in the parameter q = pa z @(x& where k is any integer between 0 
numerical realization of the algorithm, the subscript k was assumed 
of the node at which the function fi has the greatest change. 

After substitution of the new parameter, the linear system 

--G,Szl + H&z, + G&z, + SL_,6zt = 0 

dimensions 2x2. System 

p is replaced by motion 
and N. Note that for a 
to be equal to the number 

is obtained that can be solved by formulas analogous to (3.2) and (3.3). 
We will present a more-efficient method of solving system (3.8)-(3.10) by using the 

presence of one non-zero element in the matrices Qt. Let 3< k<N - 3. First we eliminate 
sz_, from (3.9) for i = 0 by using (3.81. Furthermore, we subtract 2i j-3 

by aA+, from the 2i + Z 
rows multiplied 

scalar rows for i = 0, 1,..., k - 3 in (3.9). Then we subtract 
2i +- 1 rows multiplied by a,la+, from 2i+3 scalar rows for i=N. N--l. . . . . k-4-3. 
We consequently have the linear system- 
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(3.11) B,Sz, -j- A,Sz, + L,Sz, = d, 

C&,_, + B,Sz, + A$Z~+~ + LiSzi+, = di, i := 1. 2. . . . k - 2 

C&_, + B,Sz, + A&,,, = di, i = k - 1, k. k + 2 

Mj&i-* + C,&_, + R&Q + A&i+1 == d,, i = k f 2, 

k-t-3, . . ..N 

-GN&N-1 I_ HW%N -I- GNBZN+I = 0 

Here A,,Bi,Ci,Li and !tfi are new matrices obtained as a result of the above algebra. 
System(3.11) has a five-diagonal block matrix with the structure shown in the figure (the 
crosses denote the non-zero matrices of the system while the values of i in the column at the 
left indicate the subscript ascribed to the block rows of system (3.11)). Such a structure 
enables a solution to be sought by matrix factorization formulas in the form 

In the cases k = 0 and k = 1 for i = N, N - I, , . ., k f 3, 2i + 1 rows multiplied 
by a,/ai_, are subtracted from the 2i $3 scalar rows and the linear system obtained is 
solved by formulas of three-point matrix factorization. The remaining cases are considered 
analogously. For k = N,N - 1,N - 2 the linear system is solved by the formulas of five-point 
matrix factorization. 

A graph of the dependence on p of the functional 

that is proportional to the potential energy of a uniformly loaded (2'(p,s) = 4~) rigidly 
clamped isotropic spherical shell along the external edge, 
is presented in the figure for 12 = 10, _I0 :- iZi3, Y --. 0.33. 
The section of the curve distinguished by the circle is 
represented on a magnified scale in the upper right hand 
corner of the figure. 

We note that an algorithm based on reducing the equilib- 
rium equations to a boundary-value problem for a system of 
first-order equations and by iteration continuation in the 
numerical parameter being varied by using Newton's method and 
the method of finite differences was developed /23/ to 
investigate the axisymmetric post-critical behaviour of geo- 
metrically non-linear shells of revolution. 

4. [Phe upper CL of orthotropic sphericat sheUs with 
initia2 inoperfections. Because of the limitations of the 
BESM-6 computer memory and speed of response, an analysis of 
the non-axisymmetric deformation of shells in the precritical 
stage was successfully performed by using the algorithm con- 
structed in Sect.2 and the upper buckling CL was determined 
only for small values of the parameter A. For an ortho- 
tropic truncated spherical shell with non-symmetric initial 
deflection tc(z,0)= f&,(x)~o8&3 subjected to a uniformly dis- 

tributed external pressure (T (P. 2, 0) = %I, the computations can be performed even for large 
values of A taking into account the fact that problem (X.1)-11.3) possesses the property of 
cyclic symmetry with n axes 01 = nlln (l= 0, 1, . .,n - 11, and therefore, it is possible to con- 
fine oneself to the construction of a difference mesh in the domain D,,= (&,<z\< A, O.<e <m/n). 

Results of computations of the upper buckling CL p* are presented in Table 2 for ortho- 
tropic spherical shells with initial deflection 55 = E(x-- &)(z-A).cos nB for different values 
of the parameters A,r,,E, n for k, = 1.5, k, = 3, v = 0.33, and VI = 0.25. These results are obtained 
for a number of partitions N= 22 along the radial coordinate and Mz3 along the angular 
coordinate in the domain I),. It is seen that an increase in the amplitude of the initial 
imperfections as well as an increase in the relative radius of the hole r. will result in a 
reduction in the upper CL. 
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Table 2 

473 

iii 
433 
319 
307 
4663 
423 
369 

Nevertheless, the algorithm described enables one to estimate the effectiveness Of the 

use of the theory of buckling and initial post-critical behaviour 11-4, 6, 24/ to determine 
the upper CL of spherical shells. According to this theory, when there are small harmonic 
imperfections in the shelf shape in the azimuthal direction and analogous load deviations from 
a uniformly distributed one, the bifurcation point p0 transfers under unimodal buckling to 

the limit point ps that is determined by the formula /l-4/ 

(p$ - &$‘a = i’t’* 1 Ed 1 f--36, 1 5 1 eg 1 (4.1) 

which is a result of solving the system of equations 

x, = &,,l"? + L,,, (P - PO) p* -I- Lop& -i- . . . = 0, ax,:& = 0 (4.2) 

The first of Eqs.(4.2) is a bifurcation equation that is written dawn to an accuracy of 
higher-order quantities, while the second equation is the buckling condition. Here pe is the 

eiqenvalue of the boundary-value problem (2.9) and (2.10) that has the eigenvector-function 
f%r fn) co9 &. The parameters b and d in 14.1) are determined from the formurss 

b = -L,,,L& d = -L,,t&, LIta + 0 (4.3) 

dxd8 

‘(4.4) 

The upper CL of problem (l.l)-11.3) can be obtained by the formula for pI from (4.1)-(4.3) 
over a wide range of variation of the parameter A since for this only the boundary-value 
problem 12.9). (2.10) and (4.4) must be solved for systems of ordinary differential equations. 

The effectiveness of using (4.1) to evaluate the upper CL fox certain values of the par- 
ameters A, r,, 5, )2 is illustrated by Table 2, in which values of p* are presented together 
with ps for the upper CL evaluated by means of (2.2f-(2.81. These values differ by not more 
than 9%, To estimate the influence of the initial imperfections on the reduction of the CL, 
values of the critical loads pR of non-axisymmetric buckling of an ideal shell in a form 
proportionaf to the harmonic cos& are represented in the last column of Table 2. 
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5. The upper CL of isotropic spherica she2t-s under t&form eztermd presswe. The 
results of calculating the upper CL by non-axisymmetric theory /20/ are in good agreement with 
experimental data /7, 8f and were confirmed /ll, 21,'. Meanwhile, experimental values of the 
critical pressures obtained by Parmerter, Ivan-Ivanovskii, et al., Tillmann (see /I, 25/), 
Pogorelov /26/, Sunakova and Isida /27/, and Babenko and Prichko /2%/ turned out to be somewhat 
higher than the theoretical results /20/. The discrepancies obtained were recently explained 
in /29/. Conclusions were drawn in f30f, on the basis of the results in /IO, 291, concerning 
the complete agreement between the theory of large deflections /20/ and the experiment for a 
rigidly clamped spherical shell subjected to uniform external pressure. Moreover, it was 
established 1301 that the discrepancy between the theoretical values of the upper CL and the 
corresponding experimental data as well as the spread in the experimental data themselves can 
be satisfactorily explained if the imperfections are taken into account accurately. 

The equilibrium equations of isotropic spherical shells closed at the apex with initial 
deflection subjected to an external transverse load can be writen in dimensionless variables 
in the form of a system of equations with boundary conditions 

AQ_[w-_z, Fl=T(p, z, 8). AZ+‘-+“> a~ =a 3 (5.1) 

Aw = 1jw + l,w, z (z, $3) = ‘i, (iv - 22) -I- 

O<r’fA, o<e<2n 

f,F = F” - v&F, l’*F = sF” f v 
i 

+ F’ - f F“’ 

z(ri-.)(f~~._3~~..)--.4F 

[w= w' = r,F = raFl,,n= 0 

System (1.1)"(1.4) changes into the boundary-value problem (5.1) for El=E,= E,v, = Q=Y, 

G = V&/(i + v). For this case, we should set 

s,=s,=s,=s~=~1, S,=&=2, s,=-v, &=2(liv) (5.2) 

in (2.9), (2,10), (4.1)-(4.4) to determine ps by Koiter's theory. 
Changes associated with,the conditions /12/ at the shell pole were substituted into the 

system of finite-difference Eqs.(2.1) for numerical computations of p* in the case of boundary- 
value problem (5.1) and (5.2). Note that problem (5.1) was reduced /11, 16/ to a system of 
second-order equations solved by successive approximations by using the change of variables 
&tui= vt,dF=~,s R finite-difference method with a nine-point pattern was used here to solve 
linear boundary-value problems at each step. The change of variables mentioned in the algorithm 
of Sect.2 is inefficient since the volume of calculations increases considerably. 

Results of computations for p+ and ps are represented in Table 3 for the upper CL of 
uniformly loaded spherical shells with the initial deflection 

fS= $,z~(3.-A)cosnO (5.3) 

for A=6,A=7 and m=l. Values of the bifurcation points p,, corresponding to the CL of 
the buckling of an ideal spherical shell in the intrinsic form (lu,,f,J ~0s nO are presented in 
the last column. For ??&=l the values of p* and the values of pB differ by not more than 
2.2% for iEiBO.02; as iSI increases this discrepancy increases and reaches 13% for 5=O.l. 

The results presented in Table 3 confirm that the presence of initial imperfections is 
the reason for the reduction of the upper CL and, moreover, its values can be determined by 
Koiter's formula (4.1) not at the least bifurcation point but at the next if the initial 
deflection components proportional to the harmonic of the intrinsic form of this second 
bifurcation point is predominant. The upper CL of non-axisymmetric buckling or an ideal shell 
for A= O equals the value of the least bifurcation point pz= 0.772 according to /2O/. 
The next bifurcation point p,=O.827 is located after the point pa. Rssuming PO = .D~> we obtain 
from (4.1)-(4.3) that the imperfection (5.3) does not influence the CL pz for m=l,n=3 

since d=O. Furthermore, assuming po== ps we find d+O and it follows from (4.1) that the 
bifurcation point ps transfers into the limit point p,=O.742 for 5 = 0.01 and ps = 0.693 for 
;; = 0.02. The calculated values of pa are less than Pa. Therefore, it is not the lowest point 
of bifurcation pp but the next bifurcation point PS after it that generates the upper 
buckling CL of an imperfect shell. Naturally the upper CL is given by (4.1) for p,,= pa in 
the case of initial damage (5.3) for m= 1, n= 2. 

The results of compuations for the initial damage (5.3) are represented in Table 4 for 
!n= 2, from which it follows that in improvement in the smoothness of the initial imperfection 
at z=O results in a decrease in the discrepancy between the values of p* and pa for ident- 

ical values of& In particular, it does not exceed 1.6% for E-O.05 and E = 0.1 for A=6 
and does not exceed 3% for 5= 0.05 for A = 7. 
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Table 3 

A / kX102 / n ) NXM j p+xlos 1 PsXiO' 

I I I I I 
5.53 
5.53 
5.53 

: 

E 

! 
7 

i 
7 

20X8 
20X8 
20X8 
10X6 
10X6 
10X6 
12X6 
12X6 
23X8 
23X8 
23X8 
23X8 

702 
637 
586 
693 

E! 
698 
654 
595 
702 
644 

717 
650 
599 
689 
640 
385 
742 
693 
647 
582 
698 
632 

P,XiO’ 

778 
778 
778 
772 
772 
772 
826 
826 
758 
758 
810 
810 

Table 4 

n 

6" 1 ; 734 
1; % 

726 637 
6 : 557 
:: : E 615 689 

7 5 : 572 557 

For n=l we obtain from the boundary-value problem (2.9) and (5.2) for determining w,,fl 

[Y, = Y,],,, = IY, = ZYZT’ - vY*f,,* = 0 

Y, = zq - q, Y, = Zfi’ - fl 

The values pa is found by using (4.1)-(4.4), and (5.2) but with the boundary conditions 
at z=A, replaced by the condition for 

by the following: 
z=6 /3, 4, 24/, and the functions g,,6a,tl,t, replaced 

62 (4 = - & Y,Y*, 
1 

g2 (4 = - 4r"yp 
i 

tl(4 = w (S~YIY,)‘, tg (.c) = - & (z*Yp) 

The results of computations of the upper CL p* and ps for a spherical shell for A =5.53 
and the initial damage (5.3) for m= L= i subjected to uniform external pressure are presented 

in Table 3. In this case the values of p* and p, 
Consider the problem /ll, 

differ by not more than 2.3% for I&I<0.05. 
21/ of calculating values of the upper CL of an ideal isotropic 

spherical shell subjected to external loads of the form 
&COSd3), %=&GO 

T, (P, 2, ‘3 = 4~ + q ~0s n6, T, (P, 3, 0) = 4~ (1 + 
for z<lO" and ~=q, Q,=F for 2 > 10-3, where E 

quantities. 
and q are small scalar 

A system of non-linear differential equations with boundary conditions 

(5.4) 
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(5.5) 

was derived from (5.1) for solving this problem in /21/, on the basis of the assumption that 
components with the zero-th and n-th azimuthal harmonics play the main part in the cosine- 
series expansions of the functions w and F. 

Compared with formulas (4.136)-(4.139) in 1211, components were appended here correspond- 
ing to the n-th harmonic of the initial deflection in the form of the middle surface. The 
expressions fox rl, %fn. r,,,f, are written by using (2.9) and (5.2). 

The method of adjustment based on reduction to a Cauchy problem and tne determination of 
the adjustment parameters A,. B,> D,, A,, B,, G,,D, from a system of seven non-linear algebraic 
equations corresponding to the boundary conditions on the right end, was used to solve the 
boundary-value problem (5.4) and (5.51 in /21/. 

We will describe what, in our opinion, is a simpler method of solving system (5.4) and 
(5.5). For p=pl let the vector-function v$ = {we (z,p,), j* (2. pr)} be known. Setting P m-pI--Ap 
and taking V,, as the initial approximation of the vector-function {wO (2, ~1% /,, (z. P)), we obtain 
a linear boundary-value problem in wn,fn from (5.51, from which we find the vector-function 
u, = ('UT%(*) (2, P), fnCi) (G P)l for i-_I by finite-difference methods. Now, replacing {IL+,, fn} by U,, 
we obtain a non-linear boundary-value problem for no. fo from (5.4) from which we find C'> _ 

{%(i) (5, P), fo”’ (5, PI) for i=l by using Newtonian iterations and the method of finite dif- 
ferences. Further, using V, instead of V,, we find Uz from (5.5) and then taking account of U, 
we calculate v, from (5.4). We continue the iteration process for p ==pl+ dp until the 
solution of system (5.4) and (5.5) is found with a given degree of accuracy. After this we 
obtain p =pE t 2& etc. The method can be carried over to the case of shells of revolution, 
including conical and cylindrical shells, with small changes in the boundary-value problems 
(5.4) and (5.5). This same algorithm can be realized analogously by using the adjustment 
method /4, 21/. 

Table 5 

5.53 : 3 725 742 1 730 742 
5.53 684 703 
5.53 1 15" 650 673 5" tiE 

706 
680 

: : 3 9 710 749 704 739 ; 729 694 739 706 
6 2 15 681 676 5 669 682 

Table 6 

Table 5 shows the results of numerical computations of the upper CL of ideal isotropic 
spherical shells subjected to external loads T, (the left side of the table) and T4 (the right 
side). Values of p* are calculated by (2.2)-(2.8) and values of ps by using the Lyapunov- 
Schmidt method, where the load deviation from hydrostatic is taken into account as in /32/. 
Values of ps in the case of the load T3 were determined by (4.1) but with g replaced by q 
and L001 by 

In the case n=l the expression for L& is converted to the form 
h 

n L*--- 001- 3A4 s 
Y&?z, Y, = mu;--q 

0 
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by using the Dirichlet formula. 
We obtain the bifurcation equation for the load Ta in the form 

.% = b,RS + &I, (P - PO) i”l -5 4@*, i- . . . = 0 

where LW and L,, are given by (4.3) while the value of ps is found from the formula 

(ps - p,$‘* = 6p, /ed[ J--35 W% 

which is obtained from the solution of the system 

x, = 0, f3x,/apl = 0 

The simple iteration method was used in solving (5.61. The values of p* and ps differ 

by not more than 3.5% for iq /CO.15 for the load T, and by 3.1% for ~EI<O.OS for the load 
Tp. 

Results of computations of the upper CL obtained by different methods are shown in Table 
6 for an isotropic spherical shell subjected to an external load T4 for A = 7, v = 0.33, e = 0.02. 
In addition to the values of pm and ps, results are given for values of Ps /21/ and values 

of PBM calculated on the basis of the baundary-value problems (5.4) and (5.5) using the 
modification of the method described above 1211. The results presented illustrate the efficiency 
of the Lyapunov-Schmidt method and the method of /21/ in the case of buckling in one natural 
shape. 
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3. 

4. 

5. 
6. 

7. 

a. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 
19. 

20. 
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ON THE ANALYSIS OF THIN POROUS COATINGS* 

E.V. KGVALENKO 

A plane contact problem is considered for an elastic layer whose pores 
are filled with a viscous incompressible fluid. It is shown that in the 
case of a relatively small layer (coating) thickness its rheological 
properties can be modelled by equations of the Fuss-Winkler foundation 
with a bed operator coefficient (the analogue of the hereditary 
elasticity equations). The case of the impression of a parabolic stamp 
in a thin porous-elastic coating is investigated in detail. Asymptotic 

formulas are obtained for the fundamental contact interaction 
characteristics, namely, the settling of the foundation under the stamp, 
the contact domain, and the contact pressure, which hold for short and 
long times. 

The experience of producing and using antifriction coatings in modern engineering results 
in the need to control their structure and functional properties. Among such coatings one 
should mention primarily porous-elastic coatings whose surface is antifrictional by virtue of 
its ability to absorb oil and then to release it under loading. Moreover, the theory of the 
deformation of porous-elastic bodies is convenient for describing a number of features of 
material production by porous metallurgy methods /l/e The principles of this theory were 


